Joint Named Entity Recognition and Stance Detection in Tweets

نویسنده

  • Dilek Küçük
چکیده

Named entity recognition (NER) is a well-established task of information extraction which has been studied for decades. More recently, studies reporting NER experiments on social media texts have emerged. On the other hand, stance detection is a considerably new research topic usually considered within the scope of sentiment analysis. Stance detection studies are mostly applied to texts of online debates where the stance of the text owner for a particular target, either explicitly or implicitly mentioned in text, is explored. In this study, we investigate the possible contribution of named entities to the stance detection task in tweets. We report the evaluation results of NER experiments as well as that of the subsequent stance detection experiments using named entities, on a publicly-available stance-annotated data set of tweets. Our results indicate that named entities obtained with a high-performance NER system can contribute to stance detection performance on tweets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stance Detection on Tweets: An SVM-based Approach

Stance detection is a subproblem of sentiment analysis where the stance of the author of a piece of natural language text for a particular target (either explicitly stated in the text or not) is explored. The stance output is usually given as Favor, Against, or Neither. In this paper, we target at stance detection on sports-related tweets and present the performance results of our SVM-based sta...

متن کامل

Joint Inference of Named Entity Recognition and Normalization for Tweets

Tweets represent a critical source of fresh information, in which named entities occur frequently with rich variations. We study the problem of named entity normalization (NEN) for tweets. Two main challenges are the errors propagated from named entity recognition (NER) and the dearth of information in a single tweet. We propose a novel graphical model to simultaneously conduct NER and NEN on m...

متن کامل

Improving Named Entity Recognition in Tweets via Detecting Non-Standard Words

Most previous work of text normalization on informal text made a strong assumption that the system has already known which tokens are non-standard words (NSW) and thus need normalization. However, this is not realistic. In this paper, we propose a method for NSW detection. In addition to the information based on the dictionary, e.g., whether a word is out-ofvocabulary (OOV), we leverage novel i...

متن کامل

بهبود شناسایی موجودیت‌های نامدار فارسی با استفاده از کسره اضافه

Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...

متن کامل

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.09611  شماره 

صفحات  -

تاریخ انتشار 2017